Acanthocephala

Thorny-headed worms

Phylogenetic relationship among genera of Polymorphidae (Acanthocephala), inferred from nuclear and mitochondrial gene sequences.

Publication Type:Journal Article
Year of Publication:2013
Authors:M. García-Varela, de León, G. Pérez- Pon, Aznar, F. J., Nadler, S. A.
Journal:Mol Phylogenet Evol
Date Published:2013 Apr 6
ISSN:1095-9513
Abstract:

Acanthocephalans of the family Polymorphidae Meyer, 1931 are obligate endoparasites with complex life cycles. These worms use vertebrates (marine mammals, fish-eating birds and waterfowl) as definitive hosts and invertebrates (amphipods, decapods and euphausiids) as intermediate hosts to complete their life cycle. Polymorphidae has a wordwide distribution, containing 12 genera, with approximately 127 species. The family is diagnosed by having a spinose trunk, bulbose proboscis, double-walled proboscis receptacle, and usually four to eight tubular cement glands. To conduct a phylogenetic analysis, in the current study sequences of the small (18S) and large-subunit (28S) ribosomal RNA, and cytochrome c oxidase subunit 1 (cox 1) were generated for 27 taxa representing 10 of 12 genera of Polymorphidae, plus three additional species of acanthocephalans that were used as outgroups. Maximum likelihood (ML), maximum parsimony (MP), and Bayesian analyses were conducted on a combined nuclear rRNA (18S+28S) data set and on a concatenated dataset of nuclear plus one mitochondrial gene (18S+28S+cox 1). Phylogenetic analyses inferred with the concatenated dataset of three genes support the monophyly of nine genera (Andracantha, Corynosoma, Bolbosoma, Profilicollis, Pseudocorynosoma, Southwellina, Arhythmorhynchus, Hexaglandula and Ibirhynchus). However, the four sampled species of Polymorphus were nested within several clades, indicating that these species do not share a common ancestor, requiring further taxonomic revision using phylogenetic systematics, and reexamination of morphological and ecological data. By mapping definitive and intermediate host association onto the resulting cladogram, we observe that aquatic birds were the ancestral definitive hosts for the family with a secondary colonization and diversification to marine mammals. Whereas amphipods were ancestral intermediate hosts and that the association with decapods represent episodes of secondary colonization that arose several times during the evolutionary history of the family. Our results are useful to start testing hypothesis about the evolutionary history of this highly diverse family of acanthocephalans.

DOI:10.1016/j.ympev.2013.03.029
Alternate Journal:Mol. Phylogenet. Evol.
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith